


II. PROBLEM FORMULATION

We consider a set I of issues. Each issue i ∈ I is

described by a vector f ≜ [f1, f2, . . . , fQ]
T of heterogeneous

features, where fq ≜ [yq,1, yq,2, . . . , yq,Nq
]T is a column vector

consisting of Nq features that describe the qth feature set. We

assume that we have access to a total of N = ∑
Q
q=1Nq features.

Each issue i belongs to one out of two hypotheses, HC1 or

HC2 , where HC1 (HC2 ) denotes that issue i is of type C1 (C2).

For each feature yq,n, the probability p(yq,n∣HC1) (similarly

p(yq,n∣HC2)) of the evaluation of the nth feature that belongs

to the qth feature set when the true hypothesis is HC1 (sim-

ilarly for true hypothesis HC2 ) is empirically calculated from

training data. Further, the a priori probability P (HC1) = p of

issue i being an instance of C1 is also estimated empirically.

The probability of issue i being an instance of C2 can be

computed as P (HC2) = 1 − p. We define the cost coefficient

cq,n > 0, n ∈ {1,2, . . . ,Nq}, q ∈ {1,2, . . . ,Q} to denote the

time and effort spent evaluating the nth feature in the qth

feature set. We consider switching costs denoted by coefficient

sq,q′ > 0, to capture the cost of switching from reviewing

features in the qth feature set to reviewing features in the

q′th feature set. Further, we consider the misclassification

cost Mmj ≥ 0, which represents the cost of selecting type

j when the true hypothesis is Hm,m ∈ {C1,C2}. Here,

j ∈ {1,2, . . . , L}, and L denotes the number of decision

choices (e.g., C1,C2).

In order to calculate the belief encoded in each issue i, we

propose to review features and feature sets sequentially. More

specifically, at each step, we have to select between continuing

to review features in the current feature set or move to the next

feature set. We also need to decide if we are ready to proceed

with a classification decision or continue the feature review

process. In any case, during this process, any decision we make

is based on the accumulated information thus far, the cost of

reviewing additional features as well as the cost of switching

between feature sets. For simplicity, we begin our review pro-

cess from the first available feature set and continue to the rest

feature sets assuming an extant predefined order. In our future

work, we plan to study the case where the order of the feature

sets is not predefined and needs to be selected optimally.

Our proposed sequential review process comprises a collection

{R1, . . . ,RQ,D(R1,...,RQ)} of random variables. In particular,

random variable Rq ∈ {1,2, . . . ,Nq}, q ∈ {1,2, . . . ,Q}, indi-

cates the feature in the qth feature set that the framework de-

cides to stop. Further, random variable D(R1,...,RQ) represents

the decision we reach after concluding the review process.

It depends on Rq, q ∈ {1,2, . . . ,Q}, and takes values in the

set {1,2, . . . , L}. For instance, when L = 2, D(R1,...,RQ) = 1

denotes that issue i is of type C1, while D(R1,...,RQ) = 2

denotes that issue i is of type C2. We note that while reviewing

the features that belong to the qth feature set, the decision to

stop the review process at any feature in this set depends only

on the accumulated information until the random variable Rq .

Equivalently, features (or feature sets) that may be examined

in the future are not used.

Our goal is to select random variables R1, . . . ,RQ and

decision rule D(R1,...,RQ) to accurately classify each issue i,

while minimizing the cost incurred from reviewing individual

features and switching between feature sets. To this end, we

propose to solve the following optimization problem:

min
R1,...,RQ,D(R1,...,RQ)

J(R1, . . . ,RQ,D(R1,...,RQ)), (1)

where

J(R1, . . . ,RQ,D(R1,...,RQ)) ≜ E{
Q

∑
q=1

Rq

∑
n=1

cq,n +
Q−1

∑
q=1

sq,q+1

+

L

∑
j=1

∑
m={C1,C2}

MmjP (D(R1,...,RQ) = j,Hm)}.
(2)

The first two terms in Eq. (2) denote the cost of reviewing

the features that belong to different feature sets and the

corresponding switching costs, whereas the last term penalizes

the average cost of our classification rule.

In order to solve the optimization problem defined in

Eq. (1), we first define the a posteriori probability πq
n ≜

p(HC1 ∣y1,1, . . . , y1,R1
, . . . , yq,1, . . . , yq,n), which corresponds

to the accumulated information up to and including feature

yq,n. Lemma 1 shows how to compute πq
n iteratively.

Lemma 1. The posterior probability after reviewing the nth

feature in the qth feature set (yq,n) is:

πq
n =

π
q
n−1P (yq,n∣HC1)

π
q
n−1P (yq,n∣HC1) + (1 − π

q
n−1)P (yq,n∣HC2)

, (3)

where π
q
n−1, n ∈ {1,2, . . . ,Nq}, is the posterior probability

after the review of the n−1 feature in the qth feature set. The

initialization terms are given as π1

0
= p and π

q+1
0
= π

q
Rq

for

q ∈ {1, . . . ,Q − 1}.

Lemma 2. Using Lemma 1 and the fact that x(R1,...,RQ) =

∑
N1

n1=1
. . .∑

NQ

nQ=1
x(n1,...,nQ)1{R1=n1,...,RQ=nQ}, where 1A is

the indicator function for event A (i.e., 1A = 1 when A occurs,
and 1A = 0 otherwise), the average cost in Eq. (2) can be
written compactly as:

J(R1, . . . ,RQ,D(R1,...,RQ)) = E{
Q

∑
q=1

Rq

∑
n=1

cq,n +
Q−1

∑
q=1

sq,q+1}
+E{ L

∑
j=1

(MC1jπ
Q

RQ
+MC2j(1 − πQ

RQ
))1{D(R1,...,RQ)

=j}}. (4)

III. OPTIMAL STRATEGIES

Here, we solve the optimization problem in Eq. (4) to derive

the optimal stopping and classification strategies.

A. Classification Strategy

In our framework, the classification of issue i is per-

formed only at the final stopping time RQ after reviewing

all available feature sets. In order to obtain the optimal

classification rule D(R1,...,RQ), an independent of stopping

times R1,R2, . . . ,RQ, lower bound for the last term of Eq. (4)

is needed. Since D(R1,...,RQ) contributes only to this portion





training data as follows:

p̂(yq,n∣HC1) =
N(yq,n,C1)

∑y′q,n
N(y′q,n,C1)

, (14)

p̂(yq,n∣HC2) =
N(yq,n,C2)

∑y′q,n
N(y′q,n,C2)

, (15)

where N(yq,n,C1) and N(yq,n,C2) denote the number of
issues of type C1 and C2, respectively, that give rise to outcome
yq,n after extracting, and reviewing the nth feature in the
qth feature set. We also estimate the a priori probabilities
as follows:

[P (HC1), P (HC2)]T = [p,1 − p]T = [ NC1

NC1 +NC2
,

NC2

NC1 +NC2
]T ,
(16)

where NC1 and NC2 denote the number of type C1 and type

C2 issues in the training set, respectively.

IV. NUMERICAL RESULTS

We illustrate the performance of our algorithm on a real–

world dataset of 263 civil issues, spanning a time period

between Jan 5, 2010 and Feb 10, 2018, for the capital of the

state of New York, collected from SeeClickFix1. We performed

experiments to classify between one out of two hypotheses,

i.e., (i) Signs (missing, needed, or damaged) (C1), and (ii)

Parking Enforcement (C2). Each issue is described by two

feature sets, where the first feature set contains 1,017 features

extracted from the description and the second feature set

contains 61 features extracted from the title. Each feature in

these two feature sets is extracted by tokenizing sentences into

unigrams, removing punctuation (e.g., periods, commas, and

apostrophes), stopwords (e.g., “a”, “the”, “there”), and digits

(e.g., “8th”, “31st”), and stemming each word to its root (e.g.,

replace “parked” with “park”). A feature value corresponds

to the number of appearances of a specific word in the issue

report, with words being present in ≥ 95% and ≤ 2% of all

issues excluded.

For each feature set, conditional probabilities were esti-

mated from the training dataset. Features belonging to each

feature set were sorted in increasing order of the sum of

type I and type II errors to ensure the most informative

features from each feature set are reviewed first. The prior

probability of an issue belonging to a certain hypothesis is

also estimated from the training dataset. The number L of

decision choices is set to two and experiments were performed

for varying feature costs cn ∈ {0,10
−5,10−4,10−3,10−1,0.41}.

We also set misclassification costs to constant values, i.e.,

MC11 = MC22 = 0, MC12 = MC21 = 1. To avoid overfitting,

reported results are based on five–fold cross validation.

Our proposed approach starts by sequentially reviewing

features from the first feature set. During the feature review

process, it recursively updates the posterior probability π1

n

by incorporating the new knowledge incurred from reviewing

feature y1,n, and decides if more features should be reviewed

from the first feature set. Once it decides to stop reviewing

1https://seeclickfix.com/

Fig. 3: Probability of error as a function of the number of

reviewed features from description feature set and title set.

Inset shows the distribution of number of features used by our

proposed method to classify issues when probability of error

is lowest.

features from the first feature set, it switches to the second

feature set and continues the feature review process. Similarly

to the case of the first feature set, it recursively updates the

posterior probability π2

n. At the same time, it decides whether

to continue reviewing more features from the second feature

set or not. Once it decides to stop reviewing features from the

second feature set, each issue is classified either as type C1 or

type C2 using the optimal classification strategy.

We compare the performance of our approach to (i) a

standard Bayesian detection method [17] that uses the top 1, 5,

10, 50 features ordered using the proposed ordering technique,

as well as all available features, (ii) prior work, i.e., Support

Vector Machine with feature selection (SVM–FS) [18] with

linear (SVM–L) and Gaussian (SVM–G) kernels, and PCA

(SVM–PCA) for dimensionality reduction, and (iii) Random

Forest (RF) with maximum tree depths d = 5,10, and XG

Boosting (XG–B), which have been shown to achieve good

performance while being relatively fast compared to other

classification models [19], [20].

Fig. 3 shows the error probability achieved by our proposed

approach and the standard likelihood ratio test (also shown in

Fig. 3 as Bayesian detection) as a function of the number

of reviewed features from the first and second feature sets.

Our approach exhibits a large error probability when the

number of features reviewed by each feature set are small and

this goes down significantly as more features are reviewed.

The inset in Fig. 3 shows the number of features reviewed

from each feature set when the probability of error of our

approach reaches the lowest value. We observe that on average

approximately 2 features from the first feature set and 3

features from second feature set must be reviewed before

classifying an issue.

Table I summarizes the performance of our approach with

respect to the baselines. In all baselines, “Average” indicates

the average value of the performance metric (i.e., Accuracy,

Precision, Recall) when the two feature sets are used inde-

pendently to compute the corresponding metric. On the other

hand, “Combined” indicates the value of the performance



TABLE I: Performance comparison of our approach with

baselines.

Parameters Accuracy Precision Recall

Avg. #

feat.

Set 1 Set 2

O
u

r
A

p
p

ro
a
ch c = 0.41 0.884 0.899 0.949 0 0.8

c = 0.10 0.958 0.977 0.936 0 1

c = 10
−3

0.969 1 0.938 0 2.825

c = 10
−4

0.973 1 0.948 1.73 3.175

c = 10
−5

0.973 1 0.948 11.01 3.325
c = 0 0.957 1 0.916 645.63 3.128

B
a
y
es

ia
n

D
et

ec
ti

o
n

All (Average) 0.904 0.936 0.861 1017 61

All (Combined) 0.969 1 0.938 1078

Top 50 (Average) 0.901 0.915 0.873 50 50

Top 50 (Combined) 0.973 1 0.947 50

Top 10 (Average) 0.889 0.893 0.872 10 10

Top 10(Combined) 0.973 1 0.948 10

Top 5 (Average) 0.893 0.899 0.880 5 5

Top 5 (Combined) 0.969 0.992 0.948 5

Top 1 (Average) 0.901 0.919 0.864 1 1

Top 1 (Combined) 0.958 0.977 0.936 1

S
V

M

SVM–L (Average) 0.933 0.947 0.907 1017 61

SVM–L (Combined) 0.973 0.993 0.957 1078

SVM–G (Average) 0.813 0.900 0.623 1017 61

SVM–G (Combined) 0.943 1 0.888 1078

SVM–FS (Average) [18] 0.899 0.899 0.898 6 6

SVM–FS (Combined) [18] 0.958 0.961 0.957 6

SVM–PCA (Average) 0.916 0.941 0.875 118

SVM–PCA (Combined) 0.966 0.992 0.941 109

R
F

d=5 (Average) 0.884 0.906 0.839 1017 61

d=5 (Combined) 0.946 0.993 0.906 1078

d=10 (Average) 0.890 0.902 0.870 1017 61

d=10 (Combined) 0.958 0.993 0.925 1078

X
G

–
B All (Average) 0.903 0.908 0.881 1017 61

All (Combined) 0.977 0.969 0.987 1078

metric when the two feature sets are fused to one, i.e., both

title and description feature sets are considered as one single

feature set. Among all baselines, XG–B (Combined) using all

features achieves the highest accuracy and recall, but requires

∼ 215 times as many features in total as our approach for a

mere 0.41% and 4.11% improvement, respectively. We notice

that using the “Combined” feature set always gives rise to

better results than using two feature sets independently. Our

approach reaches a similar performance as Baysian detection

with Top 10 features (Combined) while reviewing only ∼ 1.73

and ∼ 3.17 features from the first and second feature set,

respectively. SVM–G (Combined) achieves perfect precision

as our approach, reviewing however ∼ 215 times more features.

V. CONCLUSIONS AND FUTURE WORK

In this work, a sequential hypothesis testing framework was

proposed to address the problem of automatic civil issues

classification in an accurate and timely manner. Specifically,

an optimization problem was defined in terms of the cost

of reviewing features, cost of switching between feature sets

and the Bayes risk associated with the decision rule. The

optimal classification was shown to minimize the average

Bayes risk, while the optimal stopping strategy is guaranteed

to review the least number of features in all feature sets

before reaching a decision. Evaluation on a real–world dataset

from SeeClickFix showed that accurate classification can be

performed while reducing the number of features used by up

to 99.5% compared to state–of–the–art. In our future work,

we plan to consider the case where the order of the feature

sets is not explicitly known.
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